Code for Quiz 6, more dplyr and our first interactive chart using echarts4r.
#steps 1-6
2.Read the data in the files, drug_cos.csv
, health_cos.csv
in to R and assign to the variables
drug_cos
and health_cos
, respectively
drug_cos <- read_csv("https://estanny.com/static/week6/drug_cos.csv")
health_cos <- read_csv("https://estanny.com/static/week6/health_cos.csv")
glimpse
of the datadrug_cos %>% glimpse()
Rows: 104
Columns: 9
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "Z...
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Z...
$ location <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "N...
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0....
$ grossmargin <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0....
$ netmargin <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0....
$ ros <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0....
$ roe <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0....
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 20...
health_cos %>% glimpse()
Rows: 464
Columns: 11
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZT...
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zo...
$ revenue <dbl> 4233000000, 4336000000, 4561000000, 478500000...
$ gp <dbl> 2581000000, 2773000000, 2892000000, 306800000...
$ rnd <dbl> 427000000, 409000000, 399000000, 396000000, 3...
$ netincome <dbl> 245000000, 436000000, 504000000, 583000000, 3...
$ assets <dbl> 5711000000, 6262000000, 6558000000, 658800000...
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 525100000...
$ marketcap <dbl> NA, NA, 16345223371, 21572007994, 23860348635...
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 201...
$ industry <chr> "Drug Manufacturers - Specialty & Generic", "...
4.Which variables are the same in both data sets
names_drug <- drug_cos %>% names()
names_health <- health_cos %>% names()
intersect(names_drug, names_health)
[1] "ticker" "name" "year"
For drug_cos
select (in this order): ticker
, year
, grossmargin
Extract observations for 2018
Assign output to drug_subset
For health_cos
select (in this order): ticker
, year
, revenue
, gp
, industry
Extract observations for 2018
Assign output to health_subset
drug_subset
join with columns in health_subset
drug_subset %>% left_join(health_subset)
# A tibble: 13 x 6
ticker year grossmargin revenue gp industry
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 ZTS 2018 0.672 5.82e 9 3.91e 9 Drug Manufacturers - ~
2 PRGO 2018 0.387 4.73e 9 1.83e 9 Drug Manufacturers - ~
3 PFE 2018 0.79 5.36e10 4.24e10 Drug Manufacturers - ~
4 MYL 2018 0.35 1.14e10 4.00e 9 Drug Manufacturers - ~
5 MRK 2018 0.681 4.23e10 2.88e10 Drug Manufacturers - ~
6 LLY 2018 0.738 2.46e10 1.81e10 Drug Manufacturers - ~
7 JNJ 2018 0.668 8.16e10 5.45e10 Drug Manufacturers - ~
8 GILD 2018 0.781 2.21e10 1.73e10 Drug Manufacturers - ~
9 BMY 2018 0.71 2.26e10 1.60e10 Drug Manufacturers - ~
10 BIIB 2018 0.865 1.35e10 1.16e10 Drug Manufacturers - ~
11 AMGN 2018 0.827 2.37e10 1.96e10 Drug Manufacturers - ~
12 AGN 2018 0.861 1.58e10 1.36e10 Drug Manufacturers - ~
13 ABBV 2018 0.764 3.28e10 2.50e10 Drug Manufacturers - ~
Start with drug_cos
Extract observations for the ticker ** MRK** from drug_cos
Assign output to the variable drug_cos_subset
drug_cos_subset <- drug_cos %>%
filter(ticker == "MRK")
Display drug_cos_subset
drug_cos_subset
# A tibble: 8 x 9
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 MRK Merc~ New Jer~ 0.305 0.649 0.131 0.15 0.114
2 MRK Merc~ New Jer~ 0.33 0.652 0.13 0.182 0.113
3 MRK Merc~ New Jer~ 0.282 0.615 0.1 0.123 0.089
4 MRK Merc~ New Jer~ 0.567 0.603 0.282 0.409 0.248
5 MRK Merc~ New Jer~ 0.298 0.622 0.112 0.136 0.096
6 MRK Merc~ New Jer~ 0.254 0.648 0.098 0.117 0.092
7 MRK Merc~ New Jer~ 0.278 0.678 0.06 0.162 0.063
8 MRK Merc~ New Jer~ 0.313 0.681 0.147 0.206 0.199
# ... with 1 more variable: year <dbl>
Use left_join
to combine the rows and columns of drug_cos_subset
with the columns of health_cos
Assign the output to combo_df
combo_df <- drug_cos_subset %>%
left_join(health_cos)
Display combo_df
combo_df
# A tibble: 8 x 17
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 MRK Merc~ New Jer~ 0.305 0.649 0.131 0.15 0.114
2 MRK Merc~ New Jer~ 0.33 0.652 0.13 0.182 0.113
3 MRK Merc~ New Jer~ 0.282 0.615 0.1 0.123 0.089
4 MRK Merc~ New Jer~ 0.567 0.603 0.282 0.409 0.248
5 MRK Merc~ New Jer~ 0.298 0.622 0.112 0.136 0.096
6 MRK Merc~ New Jer~ 0.254 0.648 0.098 0.117 0.092
7 MRK Merc~ New Jer~ 0.278 0.678 0.06 0.162 0.063
8 MRK Merc~ New Jer~ 0.313 0.681 0.147 0.206 0.199
# ... with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
# rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
# marketcap <dbl>, industry <chr>
Note: the variables ticker, name, location and industry are the same for all the observations
Assign the company name to co_name
co_name <- combo_df %>%
distinct(name) %>%
pull()
Assign the company location to co_location
co_location <- combo_df %>%
distinct(location) %>%
pull()
Assign the industry to co_industry
group
co_industry <-combo_df %>%
distinct(industry) %>%
pull()
Put the r
inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company Merck & Co Inc is located in New Jersey; U.S.A and is a member of the Drug Manufacturers - General industry group
Start with "combo_df"
elect variables (in this order): year
, grossmargin
, netmargin
, revenue
, gp
, netincome
Assign the output to combo_df_subset
combo_df_subset <- combo_df %>%
select(year,grossmargin ,netmargin ,
revenue, gp, netincome)
Display combo_df_subset
combo_df_subset
# A tibble: 8 x 6
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.649 0.131 48047000000 31176000000 6272000000
2 2012 0.652 0.13 47267000000 30821000000 6168000000
3 2013 0.615 0.1 44033000000 27079000000 4404000000
4 2014 0.603 0.282 42237000000 25469000000 11920000000
5 2015 0.622 0.112 39498000000 24564000000 4442000000
6 2016 0.648 0.098 39807000000 25777000000 3920000000
7 2017 0.678 0.06 40122000000 27210000000 2394000000
8 2018 0.681 0.147 42294000000 28785000000 6220000000
Create the variable grossmargin_check
to compare with the variable grossmargin
. They should be equal.
grossmargin_check
= gp
/ revenue
Create the variable close_enough
to check that the absolute value of the difference between grossmargin_check
and grossmargin
is less than 0.001
combo_df_subset %>%
mutate(grossmargin_check = gp / revenue,
close_enough = abs(grossmargin_check - grossmargin) < 0.001)
# A tibble: 8 x 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.649 0.131 4.80e10 3.12e10 6.27e 9
2 2012 0.652 0.13 4.73e10 3.08e10 6.17e 9
3 2013 0.615 0.1 4.40e10 2.71e10 4.40e 9
4 2014 0.603 0.282 4.22e10 2.55e10 1.19e10
5 2015 0.622 0.112 3.95e10 2.46e10 4.44e 9
6 2016 0.648 0.098 3.98e10 2.58e10 3.92e 9
7 2017 0.678 0.06 4.01e10 2.72e10 2.39e 9
8 2018 0.681 0.147 4.23e10 2.88e10 6.22e 9
# ... with 2 more variables: grossmargin_check <dbl>,
# close_enough <lgl>
Create the variable netmargin_check
to compare with the variable netmargin
. They should be equal.
Create the variable close_enough
to check that the absolute value of the difference between netmargin_check
and netmargin
is less than 0.001
combo_df %>%
mutate(netmargin_check = netincome / revenue,
close_enough = abs(netmargin_check - netmargin) < 0.001)
# A tibble: 8 x 19
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 MRK Merc~ New Jer~ 0.305 0.649 0.131 0.15 0.114
2 MRK Merc~ New Jer~ 0.33 0.652 0.13 0.182 0.113
3 MRK Merc~ New Jer~ 0.282 0.615 0.1 0.123 0.089
4 MRK Merc~ New Jer~ 0.567 0.603 0.282 0.409 0.248
5 MRK Merc~ New Jer~ 0.298 0.622 0.112 0.136 0.096
6 MRK Merc~ New Jer~ 0.254 0.648 0.098 0.117 0.092
7 MRK Merc~ New Jer~ 0.278 0.678 0.06 0.162 0.063
8 MRK Merc~ New Jer~ 0.313 0.681 0.147 0.206 0.199
# ... with 11 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
# rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
# marketcap <dbl>, industry <chr>, netmargin_check <dbl>,
# close_enough <lgl>
Question: summarize_industry
Fill in the blanks
Put the command you use in the Rchunks in the Rmd file for this quiz
Use the health_cos
data
For each industry calculate
mean_netmargin_percent = mean(netincome/ revenue) * 100 median_netmargin_percent = median(netincome / revenue) * 100 min_netmargin_percent = min(netincome / revenue) * 100 max_netmargin_percent = max(netincome / revenue) * 100
health_cos %>%
group_by(industry) %>%
summarize(mean_netmargin_percent = mean(netincome / revenue) * 100,
median_netmargin_percent = median(netincome / revenue) * 100,
min_netmargin_percent = min(netincome / revenue) * 100,
max_netmargin_percent = max(netincome / revenue) * 100) %>% flextable::flextable()
industry | mean_netmargin_percent | median_netmargin_percent | min_netmargin_percent | max_netmargin_percent |
Biotechnology | -4.657436 | 7.621995 | -197.4908687 | 68.804898 |
Diagnostics & Research | 13.139154 | 12.332079 | 0.3990080 | 26.344477 |
Drug Manufacturers - General | 19.358281 | 19.537586 | -34.8658185 | 100.853774 |
Drug Manufacturers - Specialty & Generic | 5.879275 | 9.008114 | -75.9913646 | 24.515021 |
Healthcare Plans | 3.283594 | 3.374305 | -0.3052745 | 6.020508 |
Medical Care Facilities | 6.101918 | 6.458909 | 1.3975983 | 8.304696 |
Medical Devices | 12.363459 | 14.284582 | -56.1180853 | 49.362818 |
Medical Distribution | 1.700144 | 1.033174 | -0.1016205 | 4.513858 |
Medical Instruments & Supplies | 12.313479 | 13.978242 | -47.0569354 | 48.853685 |
mean_netmargin_percent for the industry Medical Care Facilities is 6.10% median_netmargin_percent for the industry Medical Care Facilities is 6.46% min_netmargin_percentfor the industry Medical Care Facilities is 1.40% max_netmargin_percentfor the industry Medical Care Facilitiesis 8.30%
Fill in the blanks
Use the health_cos
data
Extract observations for the ticker BMY from health_cos
and assign to the variable health_cos_subset
health_cos_subset <- health_cos %>%
filter(ticker == "BMY")
Display health_cos_subset
health_cos_subset
# A tibble: 8 x 11
ticker name revenue gp rnd netincome assets liabilities
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 BMY Bris~ 2.12e10 1.56e10 3.84e9 3.71e9 3.30e10 17103000000
2 BMY Bris~ 1.76e10 1.30e10 3.90e9 1.96e9 3.59e10 22259000000
3 BMY Bris~ 1.64e10 1.18e10 3.73e9 2.56e9 3.86e10 23356000000
4 BMY Bris~ 1.59e10 1.19e10 4.53e9 2.00e9 3.37e10 18766000000
5 BMY Bris~ 1.66e10 1.27e10 5.92e9 1.56e9 3.17e10 17324000000
6 BMY Bris~ 1.94e10 1.45e10 5.01e9 4.46e9 3.37e10 17360000000
7 BMY Bris~ 2.08e10 1.47e10 6.48e9 1.01e9 3.36e10 21704000000
8 BMY Bris~ 2.26e10 1.60e10 6.34e9 4.92e9 3.50e10 20859000000
# ... with 3 more variables: marketcap <dbl>, year <dbl>,
# industry <chr>
In the console, type ?distinct
. Go to the help pane to see what distinct
does
In the console, type ?pull
. Go to the help pane to see what pull
does
health_cos_subset %>%
distinct(name) %>%
pull(name)
[1] "Bristol Myers Squibb Co"
Assign the output to co_name
co_name<- health_cos_subset %>%
distinct(name) %>%
pull(name)
You can take output from your code and include it in your text.
The name of the company with ticker BMY is Bristol Myers Squibb Co
In following chuck
Assign the company’s industry group to the variable co_industry
co_industry <- health_cos_subset %>%
distinct(industry) %>%
pull()
This is outside the R chunk. Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company Bristol Myers Squibb Co is a member of the Drug Manufacturers - General group.
start with health_cos THEN
group_by industry THEN
calculate the median research and development expenditure as a percent of revenue by industry
assign the output to df
glimpse
to glimpse the data for the plotsdf %>% glimpse()
Rows: 9
Columns: 2
$ industry <chr> "Biotechnology", "Diagnostics & Research", "D...
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.0685187...
use ggplot
to initialize the chart
data is df
the variable industry
is mapped to the x-axis reorder it based the value of med_rnd_rev
the variable med_rnd_rev
is mapped to the y-axis
add a bar chart using geom_col
use scale_y_continuous
to label the y-axis with percent
use coord_flip()
to flip the coordinates
use labs
to add title, subtitle and remove x and y-axes
use theme_ipsum()
from the hrbrthemes package to improve the theme
ggplot(data = df,
mapping = aes(
x = reorder(industry, med_rnd_rev ),
y = med_rnd_rev
)) +
geom_col() +
scale_y_continuous(labels = scales::percent) +
coord_flip() +
labs(
title = "Median R&D expenditures",
subtitle = "by industry as a percent of revenue from 2011 to 2018",
x = NULL, y = NULL) +
theme_ipsum()
Save the last plot to preview.png and add to the yaml chunk at the top
ggsave(filename = "preview.png",
path = here::here("_posts", "2021-03-02-joining-data"))
Create an interactive bar chart using the package [echarts4r] (https://echarts4r.john-coene.com/index.html)
start with the data df
use arrange
to reorder med_rnd_rev
use e_charts
to initialize a chart the variable industry
is mapped to the x-axis
add a bar chart using e_bar
with the values of med_rnd_rev
use e_flip_coords()
to flip the coordinates
use e_title
to add the title and the subtitle
use e_legend
to remove the legends
use e_x_axis
to change format of labels on x-axis to percent
use e_y_axis
to remove labels on y-axis-
use e_theme
to change the theme. Find more themes here
df %>%
arrange(med_rnd_rev) %>%
e_charts(
x = industry
) %>%
e_bar(
serie = med_rnd_rev,
name = "median"
) %>%
e_flip_coords() %>%
e_tooltip() %>%
e_title(
text = "Median industry R&D expenditures",
subtext = "by industry as a percent of revenue from 2011 to 2018",
left = "center") %>%
e_legend(FALSE) %>%
e_x_axis(
formatter = e_axis_formatter("percent", digits = 0)
) %>%
e_y_axis(
show = FALSE
) %>%
e_theme("infographic")